93 research outputs found

    The impact of vertical off-centering on image noise and breast dose in chest CT with organ-based tube current modulation : A phantom study

    Get PDF
    Publisher Copyright: © 2022 Associazione Italiana di Fisica Medica e SanitariaPurpose: To determine the effects of patient vertical off-centering when using organ-based tube current modulation (OBTCM) in chest computed tomography (CT) with focus on breast dose. Materials and methods: An anthropomorphic adult female phantom with two different breast attachment sizes was scanned on GE Revolution EVO and Siemens Definition Edge CT systems using clinical chest CT protocols and anterior-to-posterior scouts. Scans with and without OBTCM were performed at different table heights (GE: centered, ±6 cm, and ± 3 cm; Siemens: centered, −6 cm, and ± 3 cm). The dose effects were studied with metal-oxidesemiconductor field-effect transistor dosimeters with complementary Monte Carlo simulations to determine full dose maps. Changes in image noise were studied using standard deviations of subtraction images from repeated acquisitions without dosimeters. Results: Patient off-centering affected both the behavior of the normal tube current modulation as well as the extent of the OBTCM. Generally, both OBTCM techniques provided a substantial decrease in the breast doses (up to 30% local decrease). Lateral breast regions may, however, in some cases receive higher doses when OBTCM is enabled. This effect becomes more prominent when the patient is centered too low in the CT gantry. Changes in noise roughly followed the expected inverse of the change in dose. Conclusions: Patient off-centering was shown to affect the outcome of OBTCM in chest CT examination, and on some occasions, resulting in higher exposure. The use of modern dose optimization tools such as OBTCM emphasizes the importance of proper centering when preparing patients to CT scans.Peer reviewe

    The effect of vertical centering and scout direction on automatic tube voltage selection in chest CT : a preliminary phantom study on two different CT equipments

    Get PDF
    Purpose: To determine the effect of patient's vertical off-centering and scout direction on the function of automatic tube voltage selection (ATVS) and tube current modulation (TCM) in chest computed tomography (CT). Methods: Chest phantom was scanned with Siemens and GE CT systems using three clinical chest CT protocols exploiting ATVS and a fixed 120 kVp chest protocol. The scans were performed at five vertical positions of the phantom (- 6 to + 6 cm from the scanner isocenter). The effects of scout direction (posterior-to-anterior, anterior-to-posterior, and lateral) and vertical off-centering on the function of ATVS and TCM were studied by examining changes in selected voltage, radiation dose (volume CT dose index, CTDIvol), and image noise and contrast. Results: Both scout direction and vertical off-centering affected ATVS. The effect differed between the vendors for the studied geometry, demonstrating differences in technical approaches. The greatest observed increase in CTDI vot due to off-centering was 91%. Anterior-to-posterior scout produced highest doses at the uppermost table position, whereas posterior-to-anterior scout produced highest doses at the lowermost table position. Dose varied least using lateral scouts. Vertical off-centering impacted image noise and contrast due to the combined effect of ATVS, TCM, structural noise, and bowtie fillers. Conclusions: Patient vertical off-centering and scout direction affected substantially the CTDI vot and image quality in chest CT examinations. Vertical off-centering caused variation also in the selected tube voltage. The function of ATVS and TCM methods differ significantly between the CT vendors, resulting in differences in CTDIvol and image noise characteristics.Peer reviewe

    Metal artifacts in intraoperative O-arm CBCT scans

    Get PDF
    Background Cone-beam computed tomography (CBCT) has become an increasingly important medical imaging modality in orthopedic operating rooms. Metal implants and related image artifacts create challenges for image quality optimization in CBCT. The purpose of this study was to develop a robust and quantitative method for the comprehensive determination of metal artifacts in novel CBCT applications. Methods The image quality of an O-arm CBCT device was assessed with an anthropomorphic pelvis phantom in the presence of metal implants. Three different kilovoltage and two different exposure settings were used to scan the phantom both with and without the presence of metal rods. Results The amount of metal artifact was related to the applied CBCT imaging protocol parameters. The size of the artifact was moderate with all imaging settings. The highest applied kilovoltage and exposure level distinctly increased artifact severity. Conclusions The developed method offers a practical and robust way to quantify metal artifacts in CBCT. Changes in imaging parameters may have nonlinear effects on image quality which are not anticipated based on physics.Peer reviewe

    Staff eye lens dose in interventional radiology and cardiology in Finland

    Get PDF
    Purpose: The aim of this study was to investigate the eye lens and whole-body radiation doses to interventional radiology and cardiology staff in two Finnish hospitals. Methods: Simultaneous measurements of personal dose equivalent quantities H-p(3) and H-p(10) were conducted in clinical conditions during different radiological and cardiological interventional procedures. In order to study the feasibility to estimate eye lens dose with H-p(10) measured over the protective apron or thyroid shield, the ratio between measured H-p(3) and H-p(10) was investigated. Results and conclusions: Applying the obtained ratio on H-p(10) records from national dose register showed that only a small number of interventional radiologists and cardiologists in Finland may exceed eye lens equivalent dose levels of 20 mSv per year or 100 mSv in five consecutive years, but likely do not exceed 50 mSv in a single year. For the most Finnish interventionalists, the eye lens dose is well below 10 mSv per year. Nurses and radiographers assisting in interventions are, on average, less exposed than interventionalists, and will not exceed 20 mSv per year. Based on our results, H-p(10) measured over the protective apron or thyroid shield provides a conservative estimate of the eye lens dose for interventional radiologists and cardiologists, provided that appropriate protective glasses are used.Peer reviewe

    Dental cone beam CT : An updated review

    Get PDF
    Cone beam computed tomography (CBCT) is a diverse 3D x-ray imaging technique that has gained significant popularity in dental radiology in the last two decades. CBCT overcomes the limitations of traditional twodimensional dental imaging and enables accurate depiction of multiplanar details of maxillofacial bony structures and surrounding soft tissues. In this review article, we provide an updated status on dental CBCT imaging and summarise the technical features of currently used CBCT scanner models, extending to recent developments in scanner technology, clinical aspects, and regulatory perspectives on dose optimisation, dosimetry, and diagnostic reference levels. We also consider the outlook of potential techniques along with issues that should be resolved in providing clinically more effective CBCT examinations that are optimised for the benefit of the patient.Peer reviewe

    KehittyvÀt kuvantamislaitteet

    Get PDF

    Avbildningstekniken utvecklas

    Get PDF

    Automatic head computed tomography image noise quantification with deep learning

    Get PDF
    Purpose: Computed tomography (CT) image noise is usually determined by standard deviation (SD) of pixel values from uniform image regions. This study investigates how deep learning (DL) could be applied in head CT image noise estimation.Methods: Two approaches were investigated for noise image estimation of a single acquisition image: direct noise image estimation using supervised DnCNN convolutional neural network (CNN) architecture, and subtraction of a denoised image estimated with denoising UNet-CNN experimented with supervised and unsupervised noise2noise training approaches. Noise was assessed with local SD maps using 3D- and 2D-CNN architectures. Anthropomorphic phantom CT image dataset (N = 9 scans, 3 repetitions) was used for DL-model comparisons. Mean square error (MSE) and mean absolute percentage errors (MAPE) of SD values were determined using the SD values of subtraction images as ground truth. Open-source clinical head CT low-dose dataset (N-train = 37, N-test( )= 10 subjects) were used to demonstrate DL applicability in noise estimation from manually labeled uniform regions and in automated noise and contrast assessment.Results: The direct SD estimation using 3D-CNN was the most accurate assessment method when comparing in phantom dataset (MAPE = 15.5%, MSE = 6.3HU). Unsupervised noise2noise approach provided only slightly inferior results (MAPE = 20.2%, MSE = 13.7HU). 2DCNN and unsupervised UNet models provided the smallest MSE on clinical labeled uniform regions.Conclusions: DL-based clinical image assessment is feasible and provides acceptable accuracy as compared to true image noise. Noise2noise approach may be feasible in clinical use where no ground truth data is available. Noise estimation combined with tissue segmentation may enable more comprehensive image quality characterization.Peer reviewe

    Actual and Potential Radiation Exposures in Digital Radiology : Analysis of Cumulative Data, Implications to Worker Classification and Occupational Exposure Monitoring

    Get PDF
    Radiation worker categorization and exposure monitoring are principal functions of occupational radiation safety. The aim of this study was to use the actual occupational exposure data in a large university hospital to estimate the frequency and magnitude of potential exposures in radiology. The additional aim was to propose a revised categorization and exposure monitoring practice based on the potential exposures. The cumulative probability distribution was calculated from the normalized integral of the probability density function fitted to the exposure data. Conformity of the probabilistic model was checked against 16 years of national monitoring data. The estimated probabilities to exceed annual effective dose limits of 1 mSv, 6 mSv and 20 mSv were 1:1000, 1:20 000 and 1:200 000, respectively. Thus, it is very unlikely that the class A categorization limit of 6 mSv could be exceeded, even in interventional procedures, with modern equipment and appropriate working methods. Therefore, all workers in diagnostic and interventional radiology could be systematically categorized into class B. Furthermore, current personal monitoring practice could be replaced by use of active personal dosemeters that offer more effective and flexible means to optimize working methods.Peer reviewe
    • 

    corecore